Calorimeter Simulation Task List

GSU Hcal Workfest 2015

Detector setup

Priority Color Code:

- This workfest
- Longer term goals

- Detector tuning studies
 - Finish timing cut studies
 - Activate timing cut by default (60ns)
 - Light collection eff.
 - # of scintillator / scintillator density
- Code tuning
 - Evolve setup with parameter database
 - Physics list (metrics e.g. resolution, size, test beam comp.)
- Test beam studies

Detector performance and tools

- EMCal
 - Calibration: Vera
- Hcal
 - Focus study on zero tilting angle
 - Neutral particle performance
 - Jets
 - Tilting angle VS jet performance in angular smearing

Priority Color Code:

- This workfest
- Longer term goals

Jet studies

Priority Color Code:

- This workfest
- Longer term goals

Code base

- Mike M. implemented major part of jet finder and jet evaluation toolset for user modules
- Port over jet background subtraction tools
- Revision flow-jet: Javier did lots of work before, keep code alive, few questions to further answer

Jet performance

- Jet resolution (pp/AA), tails, splitting
- Unfolding
- Gamma-Jet
- Fragmentation studies

Additional simulation sample

- Pythia8 + (default) Geant4 jet sample
- Neutrons + 0-tilt angle Geant4
- Some HIJING background

Priority Color Code:

- This workfest
- Longer term goals

Extra Information

Tracking performance criteria

Tracking performance criteria

We have recently decided to adopt a set of criteria for tracking performance that can be applied to all combinations of our 4 tracking detector options - in progress

Physics Channel	Physics requirements	Momentum resolution	DCA resolution	eID h rejection	Single track off.	Fake track rate
Y-> ee	$\Delta M = 100 \text{ MeV}$ $A\varepsilon = 50\% \text{ of geom.}$ acceptance	ΔpT < 1.2% (1-8 GeV/c)	N/A	> 90	90% (>2 GeV/c)?	x% (before CEMC) y% (after CEMC)
D'(z)/D(z)	$\sigma^h/\sigma^{\text{jet}} = x\%$ $z = 0-0.8$	ΔpT < 4% (1-40 GeV/c)	N/A	N/A ?	x% high pT y% low pT	x% within jet y% overall
b-jet ID via track counting	35% purity at 45% efficiency	?	< 70 μm	N/A	x% (set by 35% @ 45% goal)	y% (set by 35% @ 45% goa l)
b-jet ID via secondary vertex	35% purity at 45% efficiency	?	< 70 μm/(2-3?)	N/A	90% (>2 GeV/c)?	y% overall
γ+h jet + h	h p⊤ below jet reco threshold	?	N/A	N/A	90% (>2 GeV/c)?	y% overa ll pT dependent
Particle flow jets	?	?	N/A	N/A	90% (>2 GeV/c) ?	y% overa ll pT dependent

